Exotic New Material Could Be Two Superconductors in One – With Serious Quantum Computing Applications


Work has potential applications in Three Different Patterns of Superconductivity

Diagram illustrating three different patterns of superconductivity realized in a new material synthesized at MIT. Credit: Image courtesy of the Checkelsky lab

“An important theme of our research is that new physics comes from new materials,” says Joseph Checkelsky, lead principal investigator of the work and the Mitsui Career Development Associate Professor of Physics. “Our initial report last year was of this new material. This new work reports the new physics.”

Checkelsky’s co-authors on the current paper include lead author Aravind Devarakonda PhD ’21, who is now at layer cake, where one layer is an ultrathin film of superconducting material, while the next is an ultrathin spacer layer that protects it. Stacking these layers one atop another results in a large crystal (this happens naturally when the constituent elements of sulfur, niobium, and barium are heated together). “And that macroscopic crystal, which I can hold in my hand, behaves like a 2D superconductor. It was very surprising,” Checkelsky says.

Many of the probes scientists use to study 2D superconductors are challenging to use on atomically thin materials. Because the new material is so large, “we now have many more tools [to characterize it],” Checkelsky says. In fact, for the work reported in the current paper the scientists used a technique that requires massive samples.

Exotic superconductors

A superconductor carries charge in a special way. Instead of via one electron, charge is carried by two electrons bound together in what is known as a Cooper pair. Not all superconductors are the same, however. Some unusual forms of superconductivity can only appear when the Cooper pairs can move unimpeded through the material across relatively long distances. The longer the distance, the “cleaner” the material.

The Checkelsky team’s material is extremely clean. As a result, the physicists were excited to see if it might exhibit an unusual superconducting state, which it does. In the current paper the team shows that their new material is a finite momentum superconductor upon the application of a magnetic field. This particular kind of superconductivity, which was proposed in the 1960s, has remained a fascination to scientists.

Aravind Devarakonda

Aravind Devarakonda PhD ’21 is lead author of a paper describing an exotic form of superconductivity. Credit: Denis Paiste

While superconductivity is usually destroyed by modest magnetic fields, a finite momentum superconductor can persist further by forming a regular pattern of regions with lots of Cooper pairs and regions that have none. It turns out this kind of superconductor can be manipulated to form a variety of unusual patterns as Cooper pairs move between quantum mechanical orbits known as Landau levels. And that means, Checkelsky says, that scientists should now be able to create different patterns of superconductivity within the same material.

“This is a striking experiment which is able to demonstrate Cooper pairs moving between Landau levels in a superconductor, something that has never been observed before. Frankly, I never anticipated seeing this in a crystal you could hold in your hand, so this is very exciting. To observe this elusive effect, the authors had to perform painstaking, high-precision measurements on a uniquely two-dimensional superconductor that they had previously discovered. It’s a remarkable achievement, not only in its technical difficulty, but also in its cleverness,” says Kyle Shen, professor of physics at Cornell University. Shen was not involved in the study.

Further, the physicists realized that their material also has the ingredients for yet another exotic kind of superconductivity. Topological superconductivity involves the movement of charge along edges or boundaries. In this case, that charge could travel along the edges of each internal superconducting pattern.

The Checkelsky team is currently working to see if their material is indeed capable of topological superconductivity. If so, “can we combine both new types of superconductivity? What could that bring?” Checkelsky asks.

“It’s been a lot of fun realizing this new material,” he concludes. “As we’ve dug into understanding what it can do, there have been a number of surprises. It’s really exciting when new things come out that we don’t expect.”

Reference: “Signatures of bosonic Landau levels in a finite-momentum superconductor” by A. Devarakonda, T. Suzuki, S. Fang, J. Zhu, D. Graf, M. Kriener, L. Fu, E. Kaxiras and J. G. Checkelsky, 3 November 2021, Nature.
DOI: 10.1038/s41586-021-03915-3

This work was supported by the Gordon and Betty Moore Foundation, the Office of Naval Research, the U.S. Department of Energy (DOE) Office of Science, the National Science Foundation (NSF), and the Rutgers Center for Materials Theory.

Computations were performed at Harvard University. Other parts of the work were performed at the National High Magnetic Field Laboratory, which is supported by the NSF, the State of Florida, and Department of Energy.


Source link : https://news.google.com/__i/rss/rd/articles/CBMifWh0dHBzOi8vc2NpdGVjaGRhaWx5LmNvbS9leG90aWMtbmV3LW1hdGVyaWFsLWNvdWxkLWJlLXR3by1zdXBlcmNvbmR1Y3RvcnMtaW4tb25lLXdpdGgtc2VyaW91cy1xdWFudHVtLWNvbXB1dGluZy1hcHBsaWNhdGlvbnMv0gGBAWh0dHBzOi8vc2NpdGVjaGRhaWx5LmNvbS9leG90aWMtbmV3LW1hdGVyaWFsLWNvdWxkLWJlLXR3by1zdXBlcmNvbmR1Y3RvcnMtaW4tb25lLXdpdGgtc2VyaW91cy1xdWFudHVtLWNvbXB1dGluZy1hcHBsaWNhdGlvbnMvYW1wLw?oc=5

Author :

Publish date : 2021-11-21 22:08:50

share on: